Yiyang Bao H.Peng, Y. Chen, Y. Driouche, G. Aubin, Y. Xu, I. Zhdanov, D. Fang, C. Bremauer, W. Freude, S. Randel, A. Ramdane, K. Merghem and Christian Koos Karlsruhe Institute of Technology, Karlsruhe, Germany ## Low Back-Reflection Optical Coupling Using 3D printed Facet-Attached Micro-Lenses (FaML) Minimizing parasitic back-reflection is essential when optically coupling photonic chips or fibers. Reflections at interfaces—such as fiber-to-chip transitions or mismatched waveguides—can re-enter the system, introduce noise, destabilize lasers through optical feedback, and degrade overall signal quality. Even low reflection levels can significantly increase bit-error rates and reduce reliability in high-performance photonic systems. To mitigate these effects, we present a coupling strategy based on 3D-printed facet-attached microlenses (FaMLs). With careful design, these microlenses effectively suppress unwanted reflections while offering tunability, lateral alignment tolerance, and preservation of laser characteristics. Using this approach, we demonstrate — for the first time with an integrated external-cavity feedback circuit — a 1000-fold reduction in the intrinsic linewidth of comb tones from a quantum-dash mode-locked laser (QD-MLLD), a result not attainable with conventional coupling methods. ## References - [1] Y. Xu, et al., "3D-printed facet-attached microlenses for advanced photonic system assembly." Light: Advanced Manufacturing 4(2), 77–93 (2023). - [2] F. Lelarge, et al., "Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 µm," IEEE J. Sel. Top. Quantum Electron. **13**(1), 111–124 (2007). Figure 1: (a) Conceptual schematic of optical coupling between a quantum-dash mode-locked laser (QD-MLLD) and a Si3N4 feedback photonic integrated circuit (PIC), using a pair of strongly curved, asymmetrical facet-attached microlenses (FaMLs, shown in green) designed to minimize parasitic back-reflection. On the laser side, a tilted FaML interface (Inset i) suppress back-reflection while preserving the facet's reflectivity. To mitigate parasitic backscattering of unwanted beam sidelobes from the rough sidewall of the Si3N4 chip, we incorporate dedicated prism-like structures that deflect stray beams, see Inset (ii). (b) Microscope image of the system. The coupling distance can be precisely adjusted by a translation stage. A lensed fiber on the right collects the output light. Inset (ii): FaML printed on the QD-MLLD facet. Inset (iii): FaML with deflection prisms on the Si3N4 facet.